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An Efficient and Accurate Dynamic Stress Computation by 
Flexible Multibody Dynamic System Simulation and Reanalysis 

Jeha Ryu*, Ho-Soo Kim* and Hong Jae Yim** 
(Received August 3, 1996) 

This paper presents an efficient and accurate method for dynamic stress computation based on 

reanalysis in flexible multibody dynamic system simulation. The mode-acceleration concept that 

is widely used in linear strucural dynamics was utilized for accuracy improvement. A mode-  

acceleration equation for each flexible body is defined and the load term in the right hand side 

of the equation is represented as a combination of space-dependent and t ime-dependent terms 

so that efficient computations of dynamic stresses can be achieved. The load term is obtained 

from dynamic simulation of a flexible multibody system and a finite element method is used to 

compute stresses by quasi-static analyses. A numerical example of a flexible four-bar  mecha- 

nism shows effectiveness of the proposed method for flexible muhibody dynamic systems such 

as linkages and vehicle systems. 

Key Words  : Flexible Multibody Dynamic System Simulation, Dynamic Stress History, Mode-  

Acceleration Method, Mode-Displacement  Method 

1. In troduct ion  

Design of  a mechanical system subject to 

dynamic loads requires extensive engineering 

study on performance of the system before a 

prototype is built and tested. When components 

of a mechanical system are considered to be 

deformable, dynamic analyses have been carried 

out to obtain dynamic stress histories at points of 

interesl: for fatigue life prediction and stress-safe 

design. Fatigue failure may result from high stress 

levels together with the large number of stress 

reversals when millions of cycles of dynamic 

loads are applied to a machine component in a 

dynamic system. Even in a few cycles of dynamic 

loads, a machine component may fail because of  

the excessive stresses resulting from large magni- 
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tude loads. Therefore, an accurate prediction of 

dynamic stress histories is a keystone for fatigue 

life prediction and stress-safe design. 

Dynamic stress histories have been computed 

by high speed digital computers to accelerate 

design cycles in the design of flexible multibody 

systems. These computer-based approaches can 

be categorized into four groups: Rigid Body 
Dynamic Simulation combined with Quasi-static 
Finite Element Method(Winfrey, 1971, Sadler 

and Sandor, 1973), Finite Element Nodal 
Approaeh(Turcic and Midha, 1984a, Nagarajan 

and Turcic, 1990, Yang and Sadler, 1990), Modal 
Stress Superposition Method(Liu, 1987), and 

Hybrid Method(Yim and Lee, 199611. 

In the area of linear structural dynamics (Craig, 

198l), the Mode-Acceleration Method (MAM) 
has been used to improve dynamic :solutions by 

static structural analyses after modal velocities 

and accelerations are obtatined by the Mode- 
Displacement Method (MDM). This method used 

a truncated set of normal modes to appoximate 

the dynamic responses. In the area of nonlinear 
flexible multibody dynamics, on the other hand, 
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the hybrid method (Yim and Lee, 1996) improves 

accuracy of the dynamic stresses by utilizing the 

dynamm loads obtained from flexible multibody 

dynami.c simulations that used the assumed mode 

superposition method. However, the amount of 

computation in the hybrid method is tremendous 

for accurate stress calculation because the 

required number of quasi-static stress analyses 

corresponding to the inertia loads that are dis- 

tributed over all finite element nodes increases 

greatly as the total number of nodal points 

increases. Therefore, an efficient method should 

be sought out. 

The objective of this paper is to present an 

efficient method of improving the accuracy of 

dynamic stresses that are obtained from the con- 

ventional flexible muhibody dynamic analysis 

that uses the assumed mode superposition 

method. By utilizing the concept of the MAM in 

linear structural dyanmics, we explain theoreti- 

cally how the proposed MAM improves the accu- 

racy o~" dynamic stresses. Finally, an efficient 

computational method is summarized to solve the 

m o d e - a c c e l e r a t i o n  equa t ions  in f lexible 

muhibody dynamic systems. 

This paper is organized as follows: Section 2 

summarizes basic ideas and mathematical deriva- 

tions o( the  MDM and the MAM in linear struc- 

tural dynamics and explains the reason why the 

MAM improves the the accuracy of dynamic 

stresses. Section 3 derives mode-acceleration 

equations for a flexible body in the nonlinear 

flexible multibody dynamic systems from the 

variational Cartesian equations of motion of the 

body. Section 4 summarizes a computalionally 

efficient method of solving the mode-acceleration 

equations. Section 5 presents a numerical example 

to shove the effectiveness of the proposed method 

and it is followed by conclusions in Sec. 6. 

2. M D M  vs M A M  in Linear 

Structural  Dynamics  

Two versions of the mode superposition 

method have been used in the dynamic analysis of 

linear structures: (1) the mode-displacement 
method (MDM), and (2) the mode-acceleration 

method(MAM).  Both methods use a truncated 

set of eigenvectors as bases to approximate the 

response of the structure. 

Consider an undamped ~z degree-of-freedom 

linear dynamic system. In matrix form, the 

dynamic equations are given by 

MI] + K U - F ( I )  (1) 

where M and K are the (tz:xn) mass and stiff 

ness matrices of the structure, respectively; and 

U, I7 and F ( t )  are the nodal acceleration, 

displacement, and force vectors, respectively. 

Equation (I) can be transformed to a set of ,z 

uncoupled equations by the following transforma- 

tion, 

U = ~ a ( l )  ~ , . a , (  ) (2) 
i - I  

where a( t )  is the modal coordinate vector and 

is the modal matrix whose i-th column vectors ~ 

are the ortbonormalized eigenvectors of the sys- 

tem satisfying the eigenvalue problem : 

Kr = ~v~M~+ (3) 

where co~ is the i-th natural frequency. Then, Eq. 

(I) can be rewritten as 

ii + A a =  f ( t )  (4) 

where matrix A is a diagonal matrix that is 

composed of the square of natural frequencies. 

The fi)llowing equations are used in deriving Eq. 

(4) from Eq. (1). 

q)~M~= I (5) 

K q ) -  M # A  (6) 

$ r F ( t )  f ( l )  (7) 

In the traditional MDM, after the modal coor- 

dinate history a+(t)( i - - l ,  ..,, m) i~ computed 

from Eq. (4), the mode displacement solution is 

obtained approximately as 

m 

D ( t )  == Z,k~a,(t) (8) 
i = I  

where m is the number of normal modes, and is 

generally much smaller than the total degrees of 

freedom tz. Therefore, the MDM neglects com- 

pletely the normal modes from ( m +  1) to n. 

The MAM, first proposed by Williams (1945), 

compensates for the effect of neglected high fre- 
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quency modes. Bisplinghoff Ashley (1955) and 

Thomson (1972) insisted that the MAM has better 

convergence characteristics and requires fewer 

modes than the MDM. More recent versions of 

the MAM in the literature include Maddox 

(1975), Hangsteen and Bell (1979), and Cor- 

nwell, Craig, and Johnson(1983). The classical 

mode-accelerat ion method can be derived by 

solving Eq. (1) for U: 

U = K - 1 F -  K-1MU (9) 

where is is assumed without loss of  generality that 

the stiffness matrix is nonsingular. In other words, 

rigid body modes are not considered. If a truncat- 

ed set of  m normal modes is used to approximate 

the nodal acceleration, the second term of the 

right side in Eq. (9) can be written as 

K-~MU(t) ~-K aMOS'( t )  (10) 

where ~ and d ' ( t )  are the truncated ( n •  

modal matrix and the ( m •  l) modal coordinate 

acceleration vector, respectively. Using the rela- 

t ionship derived from Eq. (6), 

K-1Mg)= ~/~-1 (1 I) 

where A is the ( r e •  diagonal matrix that is 

composed of  the square of m natural frequencies, 

the mode-acclerat ion solution U is given by 

U = K  1F(t)-~fi~-la'(t)  (12) 

The first term in the right side of Eq. (12) 

accounts for the contribution of higher modes by 

implicitly considering a complete set of n modes. 

This term is the pseudo-stat ic response that is 

equivalent to carrying out a static analysis at each 

time step. The second term in the right side of Eq. 

(12) represents a dynamic correction applied to 

the pseudo-static response and gives the method 

its name, the mode-accelerat ion method. Once the 

( m •  l) vector d ' ( t )  is obtained by Eq. (4), it is 

easy to obtain the mode-acclerat ion solution by 

Eq. (12), which is a quasi-static equation. 

In order to show more explicitly that the MAM 

improves dynamic solutions obtained by the 

MDM, consider a computational  variant that is 

obtained by expanding the flexibility matrix in 

terms of a truncated eigenbasis(Le'ger and Wil- 

son, 1988). Solution of Eq. (4) for a ( t )  gives 

a ' ( t )  = gSrF (t)  - A d ( t )  (13) 

Inserting Eq. (13) into Eq. (12) gives 

U - = K - ~ F ( t ) + ~ d ( t )  
- ~ A  l ~ r F  ( t )  ( 1 4 )  

This equation can be written as 

U =  ~ d  (t)  + ( K  - 1 -  a5)~-1~ r) F (t)  

(15) 

Equation (15) is then rewritten as 

U =  U ( t )  + ( K  1-Kml) F( t )  (16) 

In this final expression, the first term corresponds 

to the conventional mode-displacement solution, 

and the second term represents the additional 

static correction, i.e., the amount of improvement 

by the MAM in deflections, where Km 1 is a 

symbolic representation for the truncated expan- 

sion of the flexibility matrix using a reduced set of 

m eigenvectors. Note that this static correction 

concept has been used in the context of dynamic 

substructuring to improve the convergence of 

structural responses computed by component 

mode synthesis (Craig and Chang, 1977). The 

static correction vector is defined as the residual 

attachment mode obtained from the application 

of  the residual flexibility matrix (K-I-KIn ~) to 

the specified unit magnitude loading. 

In addition to determining the displacement 

history, a dynamic analysis usually determine 

stress histories(e.g., moment, shear, axial stress, 

etc.) or at least the maximum values of stress at 

specified locations in the structure. The following 

are symbolic representations of stresses obtained 

by mode-superposition. For  the MDM, 

m 

6 ( t ) = ~ s , a ,  (17) 
i = l  

where si is the stress influence coefficient that is 

the contribution to the stress vector O" due to a 

unit displacement of the i - th  mode, i.e., a i = l .  

Note and the modal stress superposition method 

(Liu, 1987) used the same principle in the flexible 

multibody dynamics. For the MAM, the displace- 

ment approximation in Eq. (12) leads to the 

stress approximation 

m cz'i 
a( t )  (~psetadostatic -- i__~l S i (Z)~ / (18) 
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Higher modes are increasingly more important for 

moments and shears than for deflections (Craig, 

1981). Therefore, the MAM is particularly benefi- 

cial in speeding up the convergence of the internal 

stresses computation. 

3. M D M  vs M AM  in Nonlinear 
Flexible Multibody Dynamics 

3.1 Variational equations of motion of a 

:flexible body 

Consider a flexible body that is in dynamic 

equilibrium in a deformed configuration, as 

shown in Fig. 1. In the figure, the X - Y - Z  coordi- 

nate system is the inertial reference frame and the 

x -y -z  coordinate system is the body fixed refer- 

ence frame in an undeformed configuration. An 

underlined variable is measured in the inertial 

reference frame, while other variables are mea- 

sured in the local body fixed reference frame. 

The variational equation of motion of a flexible 

body are given as (Wu et al., 1989) 

,fi6r'~T~ fvar'~( Oj"-  f" }dV 

= f v  ~r176176  (19) 

where 3 r  t' is the virtual displacement vector of 

point p that is consitent with constraints; T ~ is a 

surface traction vector at point p; p is the mass 

densi ty  i zp is the acceleration vector of point p; 

fP is the body force vector at point p; r p is the (6 

• l) stress vector, ~e v is the variation of the (6 • 

1) straiin vector consistent with given boundary 

:Suffmm Tn~doa) 

T o e s  

~ o d  
fiimxiQa 

Fig. 1 Underformed and deformed configurations 
of a flexible body 

conditions; and V and S are the volume and 

surface of the body before it is deformed. Dots 

over a vector in Eq. (19) and in the following 

derivations denote the total differentiation with 

respect to time. Note that every vector is re- 

presented with respect to the body fixed reference 

frame; i.e., for any arbitrary vecto-r, v=ATv ,  
where A is the orientation matrix of the body 

fixed reference frame. 

By using relationship sP=sg+u p, the virtual 

displacement and the acclecation vectors of  point 

p are represented in the body fixed reference 

frame as 

~r p = 8 r -  gP~rr + ~u (20) 

/,P= i~ + ( ~ +  ~)s~+ ( ~ +  ~) u 
+ 2 ~ a + / /  (21) 

where 3r, a~v, and 3u are the variation of  the 

position, orientation, and deformation vectors, 

repectively; and p, &, and to are the translational 

and rotational acceleration and angular Velocity 

Vectors of the body fixed reference frame, respec- 

tively. Note that the superscript p on u is omitted 

to simplify notation. Note also that the --  (tilde) 

operator over a vector gives a ( 3 •  skew 

-symmatric matrix. 

Substitution of Eqs. (20) and (2~) into Eq. 

(19) gives 

aq~[ f s ORrdS -- f v { p ( MRRiI"R + M~,rii + SRR ) 

- QRI }dV + fs3urTPdS 

- fv~u~{ o(ii+ MI~#~+ S~) 

-- fP }dV= fvde~rrt'dV (22) 

Terms in Eq. (22) are defined as 

~q~=[ ~r r, ~rr ' ]  (23) 

�9 ' T - -  " -T  qR--[ r , ai r] (24) 

I - ~P 
MeR=[~,  _ ~ p ~  ] (25) 

~ e ~ s e  + 2 ~ P ~ U  
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fP 

T J" 
QRr=[ g e T "  l (29) 

SFF : ~ ~ S  p -~ 2 {~ a (30) 

where l is a (3 • 3) identity matrix. 

If the surface traction vector T e includes con- 

straint reaction loads that are obtained through 

Lagrangian multipliers associated with con- 

straints, then 8 q r  in Eq. (22) is arbitrary. There- 

fore, Eq. (22) is divided into (6 • 1) vector equa- 

tions for gross body motion and a variational 

equation for deformation as, 

-- Qey } d V = 0  (31) 

+ S~,,) - f*' } d V = f v & ' r r ' d V  (32) 

Equation (32) means that, for a flexible com- 

ponent a flexible multibody system, internal 

loads, D'Alembert  inertial loads, applied loads, 

and constraint reaction loads are self-equilibrated 

at each time step [ during the motion of the 

flexible multibody system. Note that even though 

Eq. (32) is written for a flexible body in a 

multibody system, geometrically nonlinear cou- 

pling effects from gross body motion and elastic 

deformation are taken into account during 

dynamic simulation of a flexible multibody sys- 

tem. Note also that Eq. (31), which is the equilib- 

rium equation for the gross body motion, is also 

satisfied during the motion. 

3.2 Mode-displacement  and mode-acce lera-  
tion solutions in f lexible  multibody 
dynamics 

Dynamic simulation of a flexible multibody 

system can be performed by representing the 

elastic displacement field u of  a flexible compo- 

nent as the sum of  modal coordinates multiplied 

by assumed modes, which may be a truncated set 

of normal modes and /o r  static correction modes 

(Yoo and Haug, 1986). Normal modes of a flex- 

ible component are obtained by solving the 

eigenvalue problem in Eq. (3) for a few of the 

lowest frequency vibration modes. These free 

vibration modes represent deformation shapes of 

the component due to its mass and stiffness distri- 

bution. To represent the local deformation at the 

action point of constraint and applied loads, 

static correction modes, such as attachment modes 

(Craig and Chang, 1977) or constraint modes 

(Craig and Bampton, 1986), can be used together 

with the vibration normal modes. For  example, 

an attachment mode is defined by imposing a unit 

force in the direction of one physical coordinate 

of  the flexible component, and zero forces else- 

where. 

With the assumed-mode representation of the 

elastic displacement field of each flexible compo- 

nent, system equations of motion of a flexible 

multibody system are constructed by assembling 

variational equations of motion (Eqs. (31) and 

(32)) of each flexible body in the system. The 

mode-displcement solutions are then obtained 

from the dynamic simulation of the system by 

solving and by integrating the system equations of 

motion (Wu et al., 1989). In this case, elastic 

displacements ( U )  and dynamic stresses ( d )  take 

the form of Eqs. (8) and (17), respectively. If 

only a truncated set of normal modes is used in 

the dynamic simulation of the system, then the 

effects of the truncated higher frequency modes 

are totally neglected, as in linear structural 

dynamics. 

On the other hand, mode-acceleration solu- 

tions can be obtained as follows: Rearrangement 

of  Eq. (32) yields 

f,,~uTp{ ( ~ +  u }dV ,~) 

+ fv&*'TrPdV 

+ ( g* ~ + ~)  sg }r ig  (33) 

If Eq. (33) is projected into a finite element 

equilibrium equation according to the standard 

discretization and assembly procedure by the 

direct stiffness method(Bathe, 1996), then it can 

be shown easily that Eq. (33) can be expressed 

symbolically as 
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M U  + C~(t) U + M~(t) U + K U  
= F T ( t )  + F z ( t ) + F , ( s 8 ,  V, r o~, t) 
- - F  (34) 

where M is the mass matrix of a flexible body; 

C~(t) and Me(t) are the t ime-varying matrices 
resulting from the coupling terms between the 

gross body motion and the elastic deformation; K 

is the stiffness matrix of the body, U, /Q, and U 

are the t ime-varying nodal acceleration, velocity, 

and displacement vectors, respectively; and F r ,  

FF, and F i  are the nodal force vectors generated 

from the surface traction loads, the applied body 

loads, and the distributed D'Alembert  inertial 

loads resulting from the gross body motion, 

respectively. Note that the mass matrix M and the 

stiffness matrix K are t ime-invariant  bacause 

they are constructed for single flexible component 

of the multibody system and because they are 

defined with respect to the body reference frame, 

which is fixed to the undeformed configuration of 

the flexible body. 

If the nodal forces, accelerations, velocties, and 

displacements in the left side of Eq. (34) except 

K U  are approximated by the mode-displacement 

solutions that are obtained by the dynamic simu- 

lation of a flexible multibody system, the mode-  

acceleration solutions in flexible multibody 

dynamics can be written as 

U = K - ~ ( F - M ~ ] - C c U - M ~ U )  (35) 

Note that Eq. (35) is a quasi-static equation 

where every load is self-equilibrated. Dynamic 

stresses ((7) are also computed from the quasi 

static equation. 

The fact that the proposed MAM improves the 

dynamic stresses obtained by the MDM can be 

easily explained in a similar way as in linear 

structural dynamics. For example, when only m 

truncated set of normal modes is used to describe 

an elastic deformation field of a flexible compo- 

nent in the dynamic simulation of a flexible 

multibody system, it can be shown easily that Eq. 

(35) can be rewritten as 

- i2= U +  G~(F - C~U-Mcg; )  (35) 

where Ga is the residual flexibility matrix which 

is defined as Ga:--(K ~-Km~). Therefore, the 

mode-accelerat ion solutions improves the mode 

-displacement solutions by the addition of the 

static correction terms G ~ ( F -  C~7-Mc~7) .  
Notice that if all normal modes are used, then the 

residual flexiblity matrix becomes zero, meaning 

that no improvement is achieved because the 

mode-accelerat ion solutions are the same as the 

mode-displacement solutions. 

The basic computational procedure of the 

proposed method can be summarized as follows: 

First, obtain time histories of gross body motion, 

constraint reaction loads, and elastic deformation 

by approximating the elastic deformation field of 

a flexible component by a suitable set of modes, 

and by solving a coupled set of system equations 

of motion. Second, compute the nodal force 

vectors in the right hand side of Eq. (36) as is 

explained in Chapter 4 and solve the quasi-static 

equation to obtain improved dynamic stresses. 

The proposed MAM in flexible multibody 

dynamics compensates for the effect of neglected 

higher frequency vibration normal modes, the 

reason of which can be deduced from the explana- 

tion in linear structural dynamics in Chapter 2. 

Therefore, the method proposed in this paper 

generates more accurate dynamic stresses than 

does the modal stress superposition method (Liu, 

1987). 

4. Efficient Solution of Mode- 
Acceleration Equations 

From Eq. (36), the mode-acceleration equa- 

tions can be rewritten as 

K U = ( F , . ( s g ,  ~, o~, o~)-Mi)-Cc{) 
-- M~.~7) + Fr + Fy (37) 

Even though the mode-acceleration equations are 

static linear equations, the solution of these equa- 

tions is expensive because the load vectors in the 

right side of Eq. (37) contains numerous time 

varying loads. This section presents an efficient 

method of solving the mode-acceleration equa- 

tions using lumped mass approach for inertial 

forces that are terms in parenthesis in Eq. (37). 

First, the nodal force vectors are represented as a 

sum of products of space-dependent terms with 
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time-dependent terms. Second, if a set of nodal 

loads associated with a unit value of a time- 

dependent term is applied statically to the finite 

element structural analysis model, a stress as- 

sociated with this t ime-invariant load is obtained 

at the node of interest. This stress is defined as a 

stress influence coefficient associated with the 

time-dependent term. Third, the total resultant 

stress histories are generated by multiplying the 

actual magnitude of the time-dependent term with 

the stress influence coefficient and then by sum- 

ming over all load cases. Note that even though a 

flexible body is moving in space, only one config- 

uration of the structural analysis model is needed 

because (1) the local representation of kinematic 

varibles and loads are used and (2) modal coordi- 

nates are employed as generalized coordinates. 

This solution scheme is very efficient because it is 

based on the 

superposition principle applicable to the time- 

invariant structural analysis. The following sub- 

sections summarize the solution procedure ex- 

plained above for the inertial, constraint reaction, 

and applied forces. 

4.1 Dynamic stresses by inertial force 
Assume that a flexible body is discretized into 

finite elements and mass is lumped at each node 

appropriately. In the detbrmed configuration, D' 

Alembert inertial forces on a lumped mass m p at 

point p can be expressed as 

f ' =  f f +  f2 (38) 

Forces in Eq. (38) are defined as 

f f  - m p ( i z + ~ s g +  ~osg) (39) 

f 2 = - m P {  ( ~ + ~ )  ~ ' ~ i + 2 ~ P a  
+ ~ ' ~ ' )  (40) 

where I/) p is the ( 3 •  translational modal 

matrix defined at nodal point b and d, d, and a" 

are modal displacement, velocity, and accelera- 

tion vectors that are generated from a dynamic 

simulation of flexible multibody systems. Note 

that f f  represents inertial forces resulting from 

the gross body motion, while f f  represents iner- 

tial forces resulting from the elastic deformation. 

Therefore, F~ in Eq. (37) is a nodal force vector 

generated from f f ,  while ( M / J +  CoU+McfJ )  

is a nodal force vector generated from ff. 

The D'Alembert inertial forces in Eq. (39) can 

be rewritten as a combination of space-dependent 

and time-dependent terms as 

7 

f,  

(hx 

Fl000 z - , 0  - x - x y 0 q  
r ~ ' = - m ' / 0 J 0 - z  0 x - y  0 -yxzO I (41) 

[001 y - x  0 - z - z  0 0 y x J  ~ 

(/)xO)y 

.2:J 
Note that sPo=[x, y, z] r is used in Eq. (39). 

Dynamic stresses induced by the inertial forces 

fg can be obtained as follows: First, twelve quasi 

-static structural analyses generate stress influence 

coefficients ,~2(i=1,  ..., 12) for unit values of 

time-dependent terms ( i:x, ~'y, i%, Chx, &y, (hz, c0z~, 

(t) 2 (1) 2, (J)x(J)y, (l)y(ZJz, (JJZ(I)X). Second, a total 

dynamic stress history due to gross body motion 

is obtained by applying the super'position princi- 

ple: 

S ~ = ~ S ( +  V~S~+ ~$3+ oJ~S~ + cogS5 + ~ S ~  
2 ~ r  2 ~ r  -~- W X S 7  Jr- (l) y S 8  ~- W 2 Z ~ - ~ - ~  - O x W y S [ o  

CO ~r  ~ r  + my ~S,l + oJ~w~SI2 (42) 

Dynamic stresses induced by inertial forces ffl 

due to deformation can be calculated in a similar 

way. First, the forces can be expressed as 

rn 

ff = - mP~, B,#~ (43) 
i = 1  

where m is the number of modal coordinates and 

~f is the (3• l) translational mode shape vector 

defined at point p. Term B~ in Eq. (43) is the (3 

• 3) time-dependent matrix, which can be expres- 

sed as 

B~ ( ~ + ~ ) a ~ + 2 ~ d z ~ + & ' J  (44) 

where matrix I is a (3 x 3) identity martix. 

Second, with the flexible inertial loads dis- 

tributed at all nodes to which masses are lumped, 

given in Eq. (43), quasi-static structural analyses 

generate the stress influence coefficients S ~  for 
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the unit values of each term (Bi)~k ( i =  1, 2,..., m 

and j & 7,= 1, 2, 3). For  example, 8~1 is obtained 

in the case that (B~)u=  1 and all other elements 

of matrix B are zero. Therefore, the total dynamic 

stress history from these deformational inertial 

forces is obtained as 

m 3 3 

s " = E E E  - ~  (B,) jkSi~, (45) 
i - - l j = l k = l  

According to Eq. (45), a total of 9m sets of  finite 

element structural analyses (FEA)  and superposi- 

tions are required for the computation of dynamic 

stresses fi'om the inertial forces due to deforma- 

tion. 

4.2 D y n a m i c  stress  by body force and concen-  

trated tract ion forces 

Dynamic stresses can also be caused by exter- 

nally applied body force (F / )  and concetrated 

traction forces (F r )  that include applied concen- 

trated and constraint reaction forces. If these 

loads are expressed in the body reference frame, 

each stress influence coefficient can be computed 

for each unit magnitude load in each coordinate 

direction. For  the applied body force, the stress 

influence coefficient is computed in the same way 

as has been done for the inertial translational 

load because both are distributed loads. For 

applied concentrated and constraint reaction 

loads, a stress influence coefficient is computed 

for the unit magnitude load in each coordinate 

direction, and then the stress is obtained by 

multipling the actual magnitude of the load. 

After the stress influence coefficient .associated 

with each unit load is defined, the total dynamic 

stress history S y resulting from applied and con- 

straint reaction loads is obtained as 

rlaf 
~f  + -s  + - f  S :  = ~. (F~xiSax~ FayiSayi Fa~iS~,,') 

i 

ncy" 

+ ~ ( F~xjS~.~: + F~,,~S~y~-: § I~S~)-z 

+ F:x~,r+ FfySf-}- F:zS~ (46) 

for body force Fs, applied concentrated loads Fa, 

and constraint reaction loads Fc, where n a f  and 

n c f  are number of applied and constraint reac- 

tion loads, repectively. The subscripts x, y, and z 

denote each body coordinate axis. 

4.3 Overal l  computat ional  procedure 

Figure 2 shows the overall computational  pro- 

cedure and conceptual data flow for the proposed 

method, based on the derivations of the previous 

sections. First, a flexible multibody dynamic 

anaysis generates t ime-dependent terms, such as 

gross body motion, modal displacements, and 

constraintd reaction loads. Note that only a trun- 

cated set of basis vectors are used to describe the 

elastic deformation field of a flexible body in this 

simulation. Second, stress influence coefficients 

are computed in association with each unit value 

of t ime-dependent terms by quasi-static structural 

analyses. Last, the total dynamic stress is obtained 

by the superposition principle. 
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5. N u m e r i c a l  E x a m p l e  

In this section, the flexible planar four-bar  

mechanism in Fig. 3 and Table 1 is simulated in 

Fig. 3 Planar four-bar crank-rocker mechanism 
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Table 1 Four bar mechanism parameters 

Parameters Crank Coupler & Follower 

Area 1.07 • 10-4m 2 4.065 • 10-Sm 2 

Length I .080• 10-~m 2.794• 10-1m 

Bending Moment of Inertia 1.62 • 10-~~ 4 8. 673 • 10-~2m 4 

Distance between ground pivots 

Lumped mass of the bearing assembly at the crank-coupler connection 

Lumped mass of the bearing assembly at the coupler-follower connection 

Modulus of Elasticity 

Weight Density 

0. 254m 

0. 443N 

0. 368N 

7.10• 107 kPa 

2.66 • 104N/m 3 

order to show the detailed computational proce- 

dure of the proposed method. This linkage system 

was tested by Turcic and others (1984b) and is 

chosen here to verify the simulated results. Even 

though four-bar mechanisms are relatively small 

scale, compared to real mechanical systems, they 

can be used to investigate dynamic characteristics 

of general flexible mechanical systems. 

Dynamic stresses at the midspan of the coupler 

are calculated while the crank rotates at 340 rpm. 

The coupler and tbllower links are modelled as 

flexible beams and the crank is modelled as a 

rigid link because the crank stiffness is much 

higher than those of other two links. Two normal 

modes for each flexible beam are obtained from 

the simply supported boundary conditions and 

are used in flexible multibody dynamic simula- 

tions. For the purpose of comparison with experi- 

mental results, steady state solutions after the 

crank rotates four cycles are sought. To obtain 

steady-state solutions, an approximate damping 

ratio of 0.03 for every modes was used (Turcic et 

a[, 1984b) 

For the proposed method, the stress influence 

coefficients are generated by static structural ana- 

lyses with simply supported boundary conditions. 

Note that any boundary conditions that will give 

a statically determinate system can be used in 

static analyses because the load system is self- 

equilibrated. For a slender beam with planar 

motion in the x y plane, the influence coefficients 

are defined for; (i) the gross body motions, ~x, 

i:y, o5~, and co~; (ii) a longitudinal joint reaction 

force at the roller end; and (iii) the forces result- 

ing from deformation. Then the total dynamic 

normal stress at the extreme fiber point p is given 

by 

~Yx'x = ~x~ + ~x2+ ~xPx3 (47) 
where o'~xl, o~x2, and axPx3 are normal stresses 

resulting from the gross body motion, joint reac- 

tion force, and deformation, respectively. They 

are defined as 

ax~x~ = (~x--gx) S~+  ( ~ , -  gy) ~ r  

+ thzS3~+ w~'~ (48) 

a~x2= fexS{ (49) 

ffPxxa = ~,, ( -- aiO)z-- 2diw~) , .~ 
i = i  

+ ~2 ( / i i -  aico~) g~+m (5O) 
i=1  

where ai is the i-th deformation modal displace- 

ment; S are normal stress influence coefficients; 

and gx, gy, and f~ are x- ,  y components of the 

gravitational acceleration, and x-component  con- 

straint reaction force, respectively. 

For the modal stress superposition method, the 

normal stress of Euler beam is defined as 

~7~Px=E~~ .~ 2 )  (51) 

where ~ is the modal strain at point p, E is the 

elastic modulus, h is the height of the beam, and 

~b~ is the i- th orthonormalized bending mode 

shape function. Note that the modal coordinate 

time histories are generated from the flexible 

dynamic simulation. 

Figure 4 shows the normal stresses at the upper 

extreme fiber of the midspan. This figure shows 

that dynamic stresses computed by the proposed 
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Fig. 4 Stresses at midpoint of the coupler 

method are more accurate than those from the 

modal stress superposition method and the rigid 

body dynamic simulation combined with quasi-  

static finite element method. 

6. Conclusions  

An efficient method  to improve  the 

computational accuracy of dynamic stresses of the 

nonlinear flexible multibody dynamic system is 

developed. This method is so general that it can 

be applied to any three dimensional flexible 

multibc, dy systems. It is shown that the proposed 

method improves dynamic stresses compared with 

solutions that are obtained by the modal stress 

superposition method and the rigid body dynamic 

simulation combined with quasi static finite ele- 

ment method. Only a small amount of addit ional 

effort is needed to improve the accuracy of 

dynamic stresses by solving the mode-accelera- 

tion equations in the postprocessing stage. A 

numerical example of a flexible four-bar  mecha- 

nism shows the effectiveness of the proposed 

method. 
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